
HickUP 1.1

by Daniel Bergström

DRAFT 1

HickUP 1.1
1 Terminology ...5
2 Installing...7
2.1 Directory structure ... 7

3 Packets..8
3.1 Types.. 8
3.2 Packet and Version .. 8

3.2.1 Packet... 8
3.2.2 About ... 9
3.2.3 Created... 9
3.2.4 Modified .. 9
3.2.5 Expire... 10
3.2.6 SubGroup... 10
3.2.7 Multiple.. 11
3.2.8 Hidden.. 11
3.2.9 Required... 11
3.2.10 Force .. 11
3.2.11 Allow ... 12
3.2.12 Deny... 13
3.2.13 Version... 13
3.2.14 AddAbout .. 13

3.3 Variables .. 14
3.3.1 Call... 14
3.3.2 Conflict .. 15
3.3.3 Create... 15
3.3.4 Env... 16
3.3.5 HTML.. 16
3.3.6 Info... 17
3.3.7 Link.. 17
3.3.8 MenuItem... 18
3.3.9 Require... 18
3.3.10 Script.. 19
3.3.11 XRes .. 19

4 Hick Make utility...20
4.1 Scripts .. 20
4.2 Menus .. 20
4.3 HTML.. 20
4.4 GNU Info ... 20

5 Projects ...21
5.1 Command line argument.. 21
5.2 Creating a new project ... 21
5.3 Specification file.. 22

5.3.1 Enable .. 23
5.3.2 Force .. 23
3

HickUP 1.1
4

HickUP 1.1

see

ws
want-
be-
ecial

ash
is

ol-

er.

har-

t on

ary 1,

ee ex-
1 Terminology
Type

A type is a identifier for what setup is wanted to be used. For more information
chapter 3.1.

STRING
A string with no set length. A string can be treated in two ways one which allo
only one word and another which can handle as many words you need. When
ing to use more then one word you need to surround the string with a ‘”’ at the
ginning and the end. There will then also be the need of escaping some sp
characters in the string, like ‘\’ slash, ‘”’ and ‘n’. To escape these you add a ‘\’ sl
in front of the character. If you ‘\n’ will this be translated into a newline. Below
some examples of strings:

String Results in

Hello Hello
“Hello World!” Hello World!
“/\\ \”ALERT!\” /\\” /\ “ALERT!” /\

At times a empty STRING is wanted, to get such a string you just have two ‘”’ f
lowed after eachother with nothing inbetween, which looks like this ““.

NUMBER
Can contain up to 9 digits. You can’t use ‘+’ plus or ‘-’ minus before the numb

GROUP
Can be written as a STRING, only it has a limit on 32 characters.

PACKET
The name of a packet. Can be written as a STRING, only it has a limit on 32 c
acters.

VERSION
A version number for a packet. Can be written as a STRING, only it has a limi
16 characters.

DATE
There is two ways to write a date, one is in seconds since 00:00:00 UTC, Janu
1970 (see time(2)). Or in a more readable format:

DD ‘/’ MM ‘/’ YYYY [‘,’ hh ‘:’ mm [‘.’ ss]]

no spaces is allowed in between the numbers and the separators. Below is thr
amples on how a date can be written:

27/07/1999
27/07/1999,11:03
27/07/1999,11:03.11
5

HickUP 1.1

bout
nk,
VARIABLES
With variables we mean those settings in a packet or version which tells hick a
how to install. The variables available is call, conflict, create, env, html, info, li
menuItem, require, script and xres. For more information see chapter 3.3.
6

HickUP 1.1

e sys-
same
setup

irec-
part
am-
2 Installing

2.1 Directory structure
Hick is installed with two parts, one which can be shared between all hosts and one for th
tem depending binaries. Depending on where you put the base directory it will have the
structure under the shared cataloge. Below is an exampe on how this can look like, it is a
for solaris and FreeBSD, see Figure 1.

Figure 1 Directories for shared hick files, showing for the types solaris and FreeBSD

This directory structure will be created when installing but the OS specifict parts, like the d
tories solaris and FreeBSD, since it’s up to you to choose how you want the HICKTYPE
to work. Examples on scripts, menus, html and info files will also be installed. As of the ex
ple package ‘hickup’ you willl need to copy it into the /etc/hick/packets/$HICKTYPE.

etc

hick

menus packetsscripts html

solarisFreeBSD FreeBSDFreeBSD FreeBSDsolarissolarissolaris
7

HickUP 1.1

bout
ill be

rsions
to dis-
ult in

ame as
Type.

lue
our

d for
re-

ith a

t times
ome
s (see

ated,
ions.
3 Packets
In this chapter we will go through how to create a packet. A packet contains information a
how to setup program, each packet have one or more versions. It is the versions which w
choosen when installing a packet. Some information can be commonly shared in the ve
and can then be written outside the version. The packet also contains information on how
play the packet. It is not possible to have a packet with the same name twice, this will res
a unspecified behaviour. All names are case insensitive.

3.1 Types
Packets is stored in directories below the packets directory. The directory names is the s
the Type names. User which doesn’t have access to a Type directory won’t be shown the
There is one directory which is shared between all the different Types, it is calledcommon. For
every Type read will the packets in thecommon directory be appended.

A hicktype could be set to the $OSTYPE, this would for different platforms give a uniq va
for that type. Setting $HICKTYPE to $OSTYPE is the normal use, only leaving it open for y
needs on different Types.

3.2 Packet and Version
The packet can be written in any order, the order will be remembered to when its displaye
the user. You don’t have to use all the settings in a packet to make it work, the minimum
quirement for a packet is that it should contain a version declaration. A line beginning w
‘#’ will be ignored.

3.2.1 Packet
Packets are the base for everything in hick, they contain the basic information, and also a
the major information, depending on what the intentions with it is. But a packet doesn’t bec
anything without having atleast one version, see chapter 3.2.13. You can have variable
chapter 3.3) in a packet will those be added to the selected version.

[GROUP [‘|’ GROUP ...] PACKET ‘{‘
‘}’

Between the braces ‘{‘ and ‘}’ can you use any variable or packet options as about, cre
modified, expire, subgroup, multiple hidden required, force, allow or deny, as well as vers
Below is an example on how the hickup packet looks like:
8

HickUP 1.1

ips on
e chap-

s to see

. This
lse. If
e ver-
ld you
Miscellaneous HickUP {
about "Hick User Profile - Utility for simple dotfile

management."

 required
 created 19/01/2000

 version def 1.1a3 {
 created 19/01/2000

 link {
 bin /local/fw/hick/1.1a3/bin/hickup
 bin /local/fw/hick/1.1a3/bin/hickprj
 bin /local/fw/hick/1.1a3/bin/hickcmd
 }

 menuItem Applications HickUP... hickup

 html "<a href='http://www.hickup.org/in-
dex.html'>HickUp.org" Applications
 }
}

3.2.2 About
With the about you can give the user a short description about the program, and helpful t
how they can start or use it. It can be override or extended by a version about message se
ter 3.2.14. This is a packet specific setting.

about STRING

3.2.3 Created
Sets the date when the packet or version was created. This to make it easy for the user
what new packets or versions have been created since the last time they checked.

created DATE

3.2.4 Modified
If you modified a already created packet or version you should set the modified settings
so that hick knows that it needs to update this packet or version, which won’t happen e
you change only version settings you only should only then change the modified date in th
sion. If you change some setting in the packet, this excludes adding a new version, shou
also change it there.

modified DATE
9

HickUP 1.1

you
ack-
ove

such
a call

but as
group

e the

t the
owed
xam-

o this

ant
dd
s and

these
3.2.5 Expire
To notify the users that you will expire a packet or version, you set this to the date when
want to expire the packet or version. After the expire date won’t it be possible to install the p
et any more. Only to remove, and hick will at the next update then also automatically rem
any packets which have expired. After the expire date you only need to keep information
as call scripts, since it is then possible to run that script to remove any files created with
script see chapter 3.3.1.

expire DATE

3.2.6 SubGroup
Extends to the main groups subgroups so that you not only can have one level of group,
many as you like. A packet can be as many subgroup as you which for each place in a sub
you need to write a subgroup declaration. When you write subgroups it will then creat
groups which doesn’t exist. This is a packet specific setting.

subGroup GROUP GROUP [‘&’ GROUP ...]

The first GROUP is to which main GROUP it belongs, this GROUP must been defined a
packet declaration. Then following group is the new subgroup to create, any groups foll
after that, separated with an ‘&’ will add another level to the subgroups. Below is some e
ples on subgroup declarations:

subGroup Games Arcade

this will put the packet in the Arcade group below the Games group. To add another level t
you just write a third group name.

subGroup Games Arcade & Fun

This will then place the packet in the Fun group below the arcade and games group.

If a packet belongs to multiple groups, will only subGroup affect the named group. If you w
to affect all groups you can just write ““ at the first group. This will tell hick that it should a
the settings for all groups the packet belongs to. If we have a packet belonging to Graphic
Viewers and we which to but this packet in a subGroup with the same name in both of
groups you can do it in two ways:

subGroup Graphics Blob
subGroup Viewers Blob

or you can just write:

subGroup ““ Blob
10

HickUP 1.1

llow
Make
to give
tting.

. An-
acket
should
wont
an’t
:

hoose
ver-

d in

tting
packet

h the
at the

ld be

is to
sers
3.2.7 Multiple
By default is it only allowed to select and install one version in each packet. If you want to a
the users to install more then one version of the packet you will need to set this option.
sure that the packet doesn’t have any internal conflicts. This can be used when you want
the user the possibility to set settings for different programs. This is a packet specific se

multiple

3.2.8 Hidden
Sometimes it can be good to hide packets for all users, this can be achieved with this flag
other possible solution is to deny all users. An example of the use it is, if you have a p
which is required, as a system setup for all users. The packet is not a choice of the user it
always be setuped, then it could be an idea to hide it. Note that if you set is on hide you
need to select is in the project specifications to allow it, it will automaticly be installed, this c
be achieved in the same way with the deny. To hide the packet you write in the spacket

hidden

3.2.9 Required
If you must have a version of a packet, and you at the same time want to let the user c
which version you can use the require option. It works like if the user haven’t selected any
sion it will automaticly choose the default version, if any, or take the first version specifie
the packet. To make a packet required you write in the packet:

required

3.2.10 Force
At times you which some users to automatically get a certain packet installed, without le
them choose. The force setting can set so that all users or some user or group can get a
version installed. When forcing a version will all other chosen versions be replaced wit
named version. You can declare as many force as you want in a packet. It is importent th
version which is going to be forced exists. This is a packet specific setting.

force VERSION

force user | group STRING VERSION

force user | group ‘{‘ [STRING ...] ‘}’ VERSION

A few examples on how you can write a force. If having a packet which everyone shou
using, you can just write it like:

force 1.0

this will then force the version 1.0 in the packet onto all the users. If only a user or group
be forced you will have to specify whom you inted to force this on. You can give a list of u
11

HickUP 1.1

ken

f that

n one

sefull.
o isn’t
many
y set-

.2 in

clusive
or groups if you put the names in between ‘{‘ and ‘}’. The user and group information is ta
from the Unix system. Example on this:

force user { nisse kalle } 1.0

forcing version 1.0 onto the users nisse and kalle. If you use a group, will all members o
group get the packet forced. Example on this:

force group admin 1.1

Forces to all members of the admin group, version 1.1. If setting so a user is in more the
force will the result be unspecified.

3.2.11 Allow
To make some packets avalibel for some users, and hiding from others, the allow can be u
You can setup a list of users which can access a specified version in the packet. Users wh
named by name or beloning to named group won’t be snown the version. You can have as
allow directions as you wish, and they can be combind with denies, see chapter 3.2.12. B
tings the version to an empty string ““ or { } will that apply for all versions in the packet.

allow user | group STRING VERSION

allow user | group STRING { [VERSION ...] }

allow user | group { [STRING] } VERSION

allow user | group { [STRING ...] }
 { [VERSION ...] }

If you want to allow the users ‘daniel’ and ‘ankan’ only to be abel to choose the version 1
a packet you can write it like this.

allow user { daniel ankan } 1.2

Perhaps also the users in the ‘stuff’ group should be granted access to 1.2 and also be ex
access to 1.0, that could be written something like this.

allow group stuff { 1.2 1.0 }

You can combind multiple allows and denies to get the effects you wish for.
12

HickUP 1.1

s the

ctabel
con-
a ver-

.

it can
etting.
3.2.12 Deny
Deny works like allow only instead of excluding all other users then the named, it denie
named users or groups.

deny user | group STRING VERSION

deny user | group STRING { [VERSION ...] }

deny user | group { [STRING] } VERSION

deny user | group { [STRING ...] }
 { [VERSION ...] }

3.2.13 Version
Before a packet is valid you must have atleast one version, else won’t the packet be sele
in hickup. There is no limit on how many version you can have in a packet. A version can
tain all variables (see chapter 3.3) and created, modified, expire and addAbout. Syntax for
sion:

version [def] VERSION ‘{‘
‘}’

Below is the version out of the hickup packet, might depend on where you install hickup

version def 1.1a3 {
 created 19/01/2000
 addAbout “\n\nThis is a development version.”

 link {
 bin /local/fw/hick/1.1a3/bin/hickup
 bin /local/fw/hick/1.1a3/bin/hickprj
 bin /local/fw/hick/1.1a3/bin/hickcmd
 }
}

3.2.14 AddAbout
This allows a version to have additional information to the packets about message. Or
override the packets about message with the override option. This is a version specific s

addAbout [override] STRING

An example on how the addAbout can be used:

addAbout “This version adds a new feature.”
13

HickUP 1.1

rsion
ing a

t in the
to the
ility to

ach.
d

an you
ou can
r the

it will
pecify
have
ions
ion fol-
w

t, and
dified
This will add to the packets about message “This version adds a new feature.”.for the ve
the addAbout is specified in. If you want to remove the packets about message when view
version you just set the override flag.

3.3 Variables
There is 11 different variables, which can be set both in the version and packet. Those se
packet is added to the versions once installing. These variables is the information added
user settings. You can have as many variables as you need. All variables have the possib
write values in a list, for example:

link bin /usr/bin/ls
link man /usr/man/man1/ls.1

these two variables can be written without having the variable name infornt of them for e
By surounding them with a ‘{‘ and ‘}’ will allow you to write a list of commands. This coul
then be written:

link {
bin /usr/bin/ls
man /usr/man/man1/ls.1

}

In the following descriptions of the variables will the list syntax not be written out.

3.3.1 Call
Sometimes the variables is not enough to get a program setuped. With the call variable c
execute a program when running the update. It can be setup when to run the call, so that y
set it only to execute the script at first installation time, or when removed. The syntax fo
call variable:

call [install | update | remove [‘&’ install |
update | remove] STRING STRING

By default is all flags setl, so that the install, update and remove flags is set. This means
be executed at occations. The first STRING is the file to execute, remember to always s
full path. And the second STRING is any additional options to the program. Both STRING
to be specified. If no options is wanted, set it to an empty STRING. Hick will add some opt
to the script such as update method, install, update or remove and packet name and vers
lowed by the additional options. All output of the script will be written to the runlog file. Belo
follows an example on how the call script works:

call install & remove /local/share/install/netscape ““

this will run the /local/share/install/netscape script when installing and removing the packe
not when updating. Updating is when a installed packet have been modified and the mo
14

HickUP 1.1

rgu-

script

nt be
ams
cket.
ere
ill it

, the

cket.
ets,.
t you
base
date is set. If a user now choose the packet ‘netscape’ and version ‘4.6’ will the following a
ments be passed to the script once executed:

/local/share/install/netscape install “netscape”
“4.6” ““

when the user then removes the packet or change to another version will it then run the
with the options:

/local/share/install/netscape remove “netscape” “4.6”
““

It will also run the script when removing a expired packet, see chapter 3.2.5.

3.3.2 Conflict
Programs sometimes conflicts with eachother so that if you setup for one the other wo
working correctly. The conflict settings is to let the user know that it can’t install both progr
and get away with it. You can conflict against a whole packet or specified versions in a pa
A conflict must be both ways so if you from a version conflict with a whole packet, must th
be a conflict back from the whole packet to that single version. In the hickup program w
warn on those occations this isn’t true. The syntax for the conflict variable:

conflict PACKET VERSION

conflict PACKET ‘{‘ [VERSION ...] ‘}’

To make a conflict to a whole packet you can make an empty string (““) on the version
packet must be specified. Some examples on conflict:

conflict emacs ““

This will create a conflict to the whole emacs packet.

conflict gcc 1.6.3

Causes a conflict to GCC version 1.6.3.

conflict gdb { 4.16 4.17 }

Marks conflicts with gdb 4.16 and 4.17.

3.3.3 Create
Sometimes it’s usefull to just add text to a text file, or just create a shell script from the pa
The create will add or create scripts. It will add to the file in no paticular order from the pack
Also is there a need of caution when creating a file, if overwritting another one. Note tha
can use ~/ and full path to the file name, as well as bin/ which will be created out of the
15

HickUP 1.1

cre-

t

epend,
n care

t have
ation
ter 4.1.

nd will

ed
be

ram.
ex-
L

de-
hick dir.. When adding and the file isn’t existing will the file be created. The synrax for the
ate variable:

create [new | append] [MODE] FILENAME CONTENTS

To create a new file, which is suppose to be a shell script you can do like this:

create new 755 bin/hello “!#/bin/sh

echo \”Hello World\\!\”

This will generate a script in ${HICKROOT}/.hick/${HICKTYPE}/bin/hello which writes ou
“Hello World!” once executed.

3.3.4 Env
Environment variables can easy be setuped with using this variable. You can append, pr
set and unset values. The paths are written without use of any separators, this will be take
of later. The environment variables can be created for various shell scripts and you don’
to think about that more then the name and value if the environment variable. The inform
here will be passed onto a script language which will generate the acctual script, see chap
Below is the syntax for the env variable:

env [prepend | append | set] NUMBER STRING STRING

env unset NUMBER STRING

you can’t mix between set, unset or prepend and append.

prepend and append, prepend will be put before the current environment value and appe
be put after the current environment value.

how is the priority levels working, the default priority level is set to 50. 0 - 49 will be plac
before the default priority and is there for of a higher priority. Anything higher then 50 will
placed after. This is for all but append which works in a reversed order.

3.3.5 HTML
HTML is mainly to setup a HTML index from where the user can get more help on the prog
A HTML page will be created for each hicktype in the users .hick directory called ind
$HICKTYPE.html, it’s generated with hickmk for more information how to setup the HTM
layout see chapter 4.3.

html CODE TOPIC

The CODE is the HTML code for the item, it can be plain text or containing HTML tags,
pending on how the html generating is done.
16

HickUP 1.1

be
ecific

en

ith

, it

, link-
re-

home
th is
TOPIC is to what kind of link groups it belongs, this can be a empty string which will then
no group assigned. Grouping the different links can make it easier for the user to find a sp
link.

html “<a href=\”http://www.hickup.org/ \
index.html\”>HickUP.org” “Applications“

this will add the HickUP.org link under the applications.

3.3.6 Info
For easy maintaining the GNU info dir file you can be using the info variable. This will th
create a personal top page for the installed packages with GNU info.

info NAME FILENAME SUBMENU ABOUT TOPIC

• NAME
text which is later selected to enter the info document.

• FILENAME
info filename to open, dosen’t need to include .info part.

• SUBMENU
if wanted you can jump info a submenu in the info file. Can be specified w
an empty string if no submenu is wanted.

• ABOUT
the about text, this should be written in a single line even if it’s very long
will be formated to fit into the menu.

• TOPIC
a kinda of grouping to make it easier to find the documents. If left as an
empty string will is belong to the head topic.

If we take the gdb’s info file for example, it will look something like this:

Development

* Gdb: (gdb). The GNU debugger GDB.

In a hick packet its written as:

info Gdb gdb "" "The GNU debugger GDB." Development

3.3.7 Link
This is perhaps the most usefull of the variables, at least what it where thought to use alot
ing of files. You can use it to create a symbolic link to an existing or non existing file, and
name the link if needed.

link [normal | rename] TO FROM

The TO field can be used in three different ways, using a full path, a relative path or user
directory. If a full path is used will the link be placed as where is specifies. The relative pa
17

HickUP 1.1

d us-

acs/

s di-
to.

rating
u does
which
fore
those

ptions,
written

or each
ipt for

make it
rsions.
pointing into the users hicktype specific directory. The user home will begin in the specifie
ers home, both ~/ and ~daniel/ can be used. Some example on this:

link bin /local/gnu/emacs/20.4/bin/emacs

This creates a link into ~/.hick/$HICKTYPE/bin called emacs pointing to /local/gnu/em
20.4/bin/emacs.

link ~/daniel-project ~daniel/project

This will create a link called daniel-projects in the current user home from daniel’s project
rectory. Even if the full path links exists it’s perhaps not to usefull when it comes to linking

3.3.8 MenuItem
To make it a bit easier can you create menu items and letting hickup take care of the gene
of the menus, see chapter 4.2. This is done by setting up the most basic, as which men
this belong to and item name, and command to execute. You can also send extra options
will be passed to the menu script. The priority is for telling which menu item should be be
another, normaly this is at 50. If a number of items are at the same priority the order of
items will be in no particular order.

menuItem [PRIORITY] MENU ITEM COMMAND
 [‘{‘ [NAME VALUE ...] ‘}’]

For adding like hickup into the menus you only need to write:

menuItem Applications HickUP... hickup

but for more advanced menus, as a whole list of menus, you perhaps want some more o
as separators and such. It depends alot on how the script for each window manager is
how well things are supported. see chapter 4.2.

menuItem 49 Programs "[separator]" "" { isSeparator 1 }

This is an example on how a separator can be made, you can pass as amny variables f
menu item as you want. Things that could be passed is where to find menu icons, the scr
each menu later decides if it wants to use it or not.

3.3.9 Require
Programs sometimes depends on another program or shared library to be found, and to
easier for the user to know what’s needed you can setup a list of required packets and ve
Required packets can be setup with ‘and’ and ‘or’ statements, is various ways.

require PACKET VERSION | ‘{‘ [VERSION ...] ‘}’
 [‘|’ PACKET VERSION |
 ‘{‘ [VERSION ...] ‘}’ ...]
18

HickUP 1.1

al

ome-
solved

ve a
rsion.

ppend-
on-

ins,
ill be
r 4.1.

well
d yet.

is, one
r two
If the version is left empty will it require that any version of that packet is installed. A norm
require might look something like this:

require Xpm ““
require zlib 1.1.3

This will prompt that the packet Xpm, of any version is needed as well as zlib 1.1.3. Only s
times the user can choose between two shared libraries like lesstif and motif, this can be
by writting:

require lesstif ““ | motif ““

You can use as many or ‘|’ as you need. The or ‘|’ can be written in another way if you ha
few versions in a packet required, as if you need some version of GTK+ before the 1.2.x ve

require GTK+ { 1.0.0 1.0.2/ 1.0.6 }

This is the same as writting a require looking as:

require GTK+ 1.0.0 | GTK+ 1.0.2 | GTK+ 1.0.6

3.3.10 Script
Scripts are a bit different then the create, see chapter 3.3.3. Instead of creating a file, or a
ing to one without any order, can you with script create a script file which is a bit more c
troled. Also this will allow you to have scripts for multiple shell types for when the user log
and wants some options setuped. With the priority level you can make sure one script w
added before another. This is much depending on the avaliabel script types, see chapte

script [PRIORITY] TYPE CONTENTS

For example can you use it to setup shell script options, as this for tcsh:

script tcshrc "limit coredumpsize 0"

But also for many other things, as different login script for getting X server started right. As
as a script to be runned after hickup, since hickup can’t always handle all cases neede
These files will then be placed in the hick directory $HICKROOT/scripts/$HICKTYPE.

3.3.11 XRes
X resources can be usefull to setup for some programs, there are three ways of doing th
is to use the link, see chapter 3.3.7, to make a link into a app-default directory. The othe
is adding into the Xresource-$HICKTYPE file, which is then merge at startup..

xres [inline] NAME VALUE

xres filename FILENAME
19

HickUP 1.1

entry
up.
You can either add entry by entry or just add a whole file into the resource file, when doing
by entry you don’t need to add the ‘:’ at the end of the name this will be handled by hick
20

HickUP 1.1

ty cre-
4 Hick Make utility
To create login scripts, window manager menus and help pages, where the hick make utili
ated. It’s a small script language to handle the information.

4.1 Scripts

4.2 Menus

4.3 HTML

4.4 GNU Info
21

HickUP 1.1

here
spec-
oject.
at pro-

them
ases

he
not a

user
argu-

.

uch

s eve-

ill be
5 Projects
This chapter will describe how you setup a project environment. To let the program know w
to find projects are done by passing as an argument to the program. It will then lookup the
ified projects, and if it has read access it will allow the user to choose programs for the pr
If also write access are allowed is a edit tab shown and the user can by that also setup wh
grams can be choosen. All programs and versions are by default not allowed.

5.1 Command line argument
There are two ways of letting hickup know which projects are availible, one is by entering
all on the command like, the other is by pointing out a file containing the projects. In both c
the project specifications are written in the same format:

NAME:SPEC:HOME [:NAME:SPEC:HOME ...]

NAME
This is the text which will be displaied on the tab in the hickup viewer.

SPEC
Where the project data files are stored. The project data files are the project
specification file and the project information. The files which are use by hick
is prjspec.hick andprjinfo.hick.

HOME
Home directory project and user, this will be where the .hick directory will all t
user data over selected packets will be stored. Should be uniq for each user, if
global project for all users are wanted.

An example on how to write a project argument, this is for the project tools, and for the
daniel. The project lies under /home/tools and all the project settings are stored there. The
ment string would look something like this:

tools:/home/tools/.users:/home/tools/.users/daniel

One idea is to have a wrapper script calling hickup, so it will take care of all project data

5.2 Creating a new project
We will now go through how to create a new project, the project we will setup is calledtools.
The way which will be shown isn’t the only solution on how to create a project, it’s pretty m
up to how you want it to work.

The project we are going to create is made so that we create a new user with it’s home a
ryone else on the system, like/home/tools. To that we also create a new group in/etc/group
which will contain the members in the group.

After we’ve created the user and the group, we create the project data directory, which w
under the projects home directory called/home/tools/.users. In this directory will we place the
project specific files, but also the users personal hick setup.
22

HickUP 1.1

e no
reate

owed
hen to
syn-
the

oject
lled

roject
This is
rams

ply be
them
ec-
Even if we now start hickup with the project setup wont hickup care about this project sinc
project specification file exists, so the next step is to create it. To do this you only need to c
an empty file, this can be achived with the commandtouch.

cd /home/tools/.users
touch prjspec.hick

it will now recognize this project as a avalible project for the users, only no packets are all
to be choosed, since all packets are by default in a project not allowed. The next step is t
setup the project specification, this can be done with either hickup or an text editor. For the
tax of the project file see chapter 5.3. When doing it in hickup you only start hickup with
project argument containing the project.

hickup -p tools:/home/tools/.users:/home/tools/.users/$USER

If wanted you can also add project information text, this can be a good way of letting the pr
members know a little more about the project. The information file is a plain text file ca
prjinfo.hick.

5.3 Specification file
With a project you perhaps want to create a development environment where all the p
members use some specified tools, and others which they can freely choose inbetween.
where the project specification comes in, it allows the project manager to setup which prog
are avalible to use in the project, but also which programs must be used. This can sim
achived with enabe a specific packet or version onto the project members, or even force
to use a specified version. A line begining with an ‘#’ will be ignored. The syntax for the sp
ification file is the following::

one line comment

enable TYPE PACKET VERSION
enable TYPE PACKET ‘{‘ [VERSION ...] ‘}’
enable TYPE ‘{‘
 [PACKET VERSION ...]
 [PACKET ‘{‘ [VERSION ...] ‘}’ ...]
‘}’

force TYPE PACKET VERSION
force TYPE PACKET ‘{‘ VERSION [VERSION ...] ‘}’
force TYPE ‘{‘
 [PACKET VERSION ...]
 [PACKET ‘{‘ VERSION [VERSION ...] ‘}’ ...]
‘}’
23

HickUP 1.1

ct all
e or
xam-

n and

s will
s sim-
more
on be

ited’
5.3.1 Enable
Enables a packet or a version to be avalible to select. If the version is left empty will it affe
versions in the named packet, this can be done by writing ““ or { }. If on the other hand on
more versions, but not all is only wanted to be enabled the versions is then specified. An e
ples on how this can be written:

enable solaris {
 gcc 2.7.2.2
 make ““
 autoconf { 2.12 2.11 }
};

this will allow the user to choose gcc 2.7.2.2 and no other version of gcc. Make any versio
autoconf version 2.12 and 2.11.

5.3.2 Force
If something really is needed of a specified version, the force directive can be used, thi
install the version on the user as if it where a force in a packet, see chapter 3.2.10. It work
mular to the enable only you have to specify at least one version. When wanting to specify
then one version the packet must support multiple choices or else will the installed versi
one of the named. An example on how this can be written:

force solaris {
 automake 1.3
 “tcsh options” { noclobber “coredump unlimited” }
}

this will install the automake 1.3 and set the ‘tcsh options’ noclobber and ‘coredump unlim
options. The user wont be abel to choose any other existing options.
24

	HickUP 1.1
	by Daniel Bergström
	1 Terminology 5
	2 Installing 7
	3 Packets 8
	4 Hick Make utility 20
	5 Projects 21

	1 Terminology
	2 Installing
	2.1 Directory structure
	Figure 1 Directories for shared hick files, showing for the types solaris and FreeBSD

	3 Packets
	3.1 Types
	3.2 Packet and Version
	3.2.1 Packet
	3.2.2 About
	3.2.3 Created
	3.2.4 Modified
	3.2.5 Expire
	3.2.6 SubGroup
	3.2.7 Multiple
	3.2.8 Hidden
	3.2.9 Required
	3.2.10 Force
	3.2.11 Allow
	3.2.12 Deny
	3.2.13 Version
	3.2.14 AddAbout

	3.3 Variables
	3.3.1 Call
	3.3.2 Conflict
	3.3.3 Create
	3.3.4 Env
	3.3.5 HTML
	3.3.6 Info
	3.3.7 Link
	3.3.8 MenuItem
	3.3.9 Require
	3.3.10 Script
	3.3.11 XRes

	4 Hick Make utility
	4.1 Scripts
	4.2 Menus
	4.3 HTML
	4.4 GNU Info

	5 Projects
	5.1 Command line argument
	5.2 Creating a new project
	5.3 Specification file
	5.3.1 Enable
	5.3.2 Force

