HickUP 1.1

by Daniel Bergstrom

DRAFT 1

HickUP 1.1

1
2

2.1
3

3.1

3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.2.9
3.2.10
3.2.11
3.2.12
3.2.13
3.2.14

3.3
3.3.1
3.3.2
3.3.3
3.34
3.35
3.3.6
3.3.7
3.3.8
3.3.9
3.3.10
3.3.11

4.1
4.2
4.3
4.4

5.1

5.2

5.3
53.1
5.3.2

Terminologyccooveviiiiii 5
INStalling ..., 7
DIFECIONY SITUCTUIE ..ottt 7
PaCKELS ... 8
LD/ LT 8
Packet and VEISIONuuuuuiiiiii i e e e e e e e e e e e e e e eeaenaannees 8
PACKET. ...ttt a e e e e e e 8
Y 010 | 9
(O =Y 11T U PPPPPUPPPR 9
1Y/ T Yo 11 1T USSP 9
o] £ PP PPPPPPPPPPPPPPP 10
Y U] 0[] o 11 o 1SRRI 10
IMUITIPIE. .t e e 11
T Lo =T o S 11
=0 [11 =T PRSP 11
O G e 11
AIOW <.t e e e e e e e e e e e e e 12
BNy e 13
AV 1o] o 1R 13
AGAADOUL ...ttt e e e e e e e e e e e e e e ee s 13
VariabIES ... ———————— 14
O | | USRS 14
(@] o1 1ox TP PPPPPP 15
L1 =T 1 PP 15
IV e 16
[1P PPPPPPPPPPPPRR 16
0] (o R UUPPPPPRRUPPPPPIN 17
| USSP 17
VLT U] =T o T UUPPPPPTRRUPPPPPIN 18
=0 [0 11 (PSSP 18
10! 1] | PP TP PP PP 19
KR S e ea 19
Hick Make utility...........ccooooiiiiiii e, 20
o) 1] 0 £SO TP PP PP 20
/=T 1 SO 20
o 0 P PEEERPRRRRR 20
(€716 1| o SRR 20
PrOJECIS ..o 21
Command liNe argUMENT.........cooiiiiiiiiiiit e 21
Creating @ NEW PrOJECTuuuuiiii i e e eeeee e e e e e e e e e e e e 21
SpeCIfication file ... 22
ENADIE ... e 23
O G e 23

HickUP 1.1

HickUP 1.1

1 Terminology

Type
A type is a identifier for what setup is wanted to be used. For more information see
chapter 3.1.

STRING
A string with no set length. A string can be treated in two ways one which allows
only one word and another which can handle as many words you need. When want-
ing to use more then one word you need to surround the string with a *” at the be-
ginning and the end. There will then also be the need of escaping some special
characters in the string, like '\’ slash, “” and ‘n’. To escape these you add a ‘\' slash
in front of the character. If you ‘\n’ will this be translated into a newline. Below is
some examples of strings:
String Results in
Hello Hello
“Hello World!” Hello World!
“N\V'ALERTI AV N“ALERT!" N\
At times a empty STRING is wanted, to get such a string you just have two *” fol-
lowed after eachother with nothing inbetween, which looks like this *“.

NUMBER
Can contain up to 9 digits. You can’t use ‘+’ plus or ‘-" minus before the number.

GROUP
Can be written as a STRING, only it has a limit on 32 characters.

PACKET
The name of a packet. Can be written as a STRING, only it has a limit on 32 char-
acters.

VERSION
A version number for a packet. Can be written as a STRING, only it has a limit on
16 characters.

DATE

There is two ways to write a date, one is in seconds since 00:00:00 UTC, January 1,
1970 (see time(2)). Or in a more readable format:

DD MM " YYYY [hh " mm[‘ ss]]

no spaces is allowed in between the numbers and the separators. Below is three ex-
amples on how a date can be written:

27/07/1999
27/07/1999,11:03
27/07/1999,11:03.11

HickUP 1.1

VARIABLES
With variables we mean those settings in a packet or version which tells hick about
how to install. The variables available is call, conflict, create, env, html, info, link,
menultem, require, script and xres. For more information see chapter 3.3.

HickUP 1.1

2 Installing

2.1 Directory structure

Hick is installed with two parts, one which can be shared between all hosts and one for the sys-
tem depending binaries. Depending on where you put the base directory it will have the same
structure under the shared cataloge. Below is an exampe on how this can look like, it is a setup
for solaris and FreeBSD, see Figure 1.

etc
hick
scripts menus packets html
solaris FreeBSD solaris FreeBSD solaris FreeBSDsolaris FreeBSD

Figure 1 Directories for shared hick files, showing for the types solaris and FreeBSD

This directory structure will be created when installing but the OS specifict parts, like the direc-
tories solaris and FreeBSD, since it's up to you to choose how you want the HICKTYPE part
to work. Examples on scripts, menus, html and info files will also be installed. As of the exam-
ple package ‘hickup’ you willl need to copy it into the /etc/hick/packets/$HICKTYPE.

HickUP 1.1

3 Packets

In this chapter we will go through how to create a packet. A packet contains information about
how to setup program, each packet have one or more versions. It is the versions which will be
choosen when installing a packet. Some information can be commonly shared in the versions
and can then be written outside the version. The packet also contains information on how to dis-
play the packet. It is not possible to have a packet with the same name twice, this will result in
a unspecified behaviour. All names are case insensitive.

3.1 Types

Packets is stored in directories below the packets directory. The directory names is the same as
the Type names. User which doesn’t have access to a Type directory won't be shown the Type.
There is one directory which is shared between all the different Types, it is calhachon. For

every Type read will the packets in tt@mmon directory be appended.

A hicktype could be set to the $OSTYPE, this would for different platforms give a uniq value
for that type. Setting $SHICKTYPE to $OSTYPE is the normal use, only leaving it open for your
needs on different Types.

3.2 Packet and Version

The packet can be written in any order, the order will be remembered to when its displayed for
the user. You don'’t have to use all the settings in a packet to make it work, the minimum re-
quirement for a packet is that it should contain a version declaration. A line beginning with a
‘# will be ignored.

3.2.1 Packet

Packets are the base for everything in hick, they contain the basic information, and also at times
the major information, depending on what the intentions with it is. But a packet doesn’t become
anything without having atleast one version, see chapter 3.2.13. You can have variables (see
chapter 3.3) in a packet will those be added to the selected version.

[GROUP [‘| GROUP ...] PACKET {'
I}’

Between the braces ‘{* and ‘} can you use any variable or packet options as about, created,
modified, expire, subgroup, multiple hidden required, force, allow or deny, as well as versions.
Below is an example on how the hickup packet looks like:

HickUP 1.1

Miscellaneous HickUP {
about "Hick User Profile - Utility for simple dotfile
management."

required
created 19/01/2000

version def 1.1a3 {
created 19/01/2000

link {
bin /local/fw/hick/1.1a3/bin/hickup
bin /local/fw/hick/1.1a3/bin/hickprj
bin /local/fw/hick/1.1a3/bin/hickcmd

}

menultem Applications HickUP... hickup

html "<a href="http://www.hickup.org/in-
dex.html'>HickUp.org" Applications

}
}

3.2.2 About

With the about you can give the user a short description about the program, and helpful tips on
how they can start or use it. It can be override or extended by a version about message see chap-
ter 3.2.14. This is a packet specific setting.

about STRING

3.2.3 Created

Sets the date when the packet or version was created. This to make it easy for the users to see
what new packets or versions have been created since the last time they checked.

created DATE

3.2.4 Modified

If you modified a already created packet or version you should set the modified settings. This
so that hick knows that it needs to update this packet or version, which won’t happen else. If
you change only version settings you only should only then change the modified date in the ver-
sion. If you change some setting in the packet, this excludes adding a new version, should you
also change it there.

modified DATE

HickUP 1.1

3.2.5 Expire

To notify the users that you will expire a packet or version, you set this to the date when you
want to expire the packet or version. After the expire date won't it be possible to install the pack-
et any more. Only to remove, and hick will at the next update then also automatically remove
any packets which have expired. After the expire date you only need to keep information such
as call scripts, since it is then possible to run that script to remove any files created with a call
script see chapter 3.3.1.

expire DATE

3.2.6 SubGroup

Extends to the main groups subgroups so that you not only can have one level of group, but as
many as you like. A packet can be as many subgroup as you which for each place in a subgroup
you need to write a subgroup declaration. When you write subgroups it will then create the
groups which doesn't exist. This is a packet specific setting.

subGroup GROUP GROUP [‘& GROUP ...]
The first GROUP is to which main GROUP it belongs, this GROUP must been defined at the
packet declaration. Then following group is the new subgroup to create, any groups followed
after that, separated with an ‘&’ will add another level to the subgroups. Below is some exam-
ples on subgroup declarations:

subGroup Games Arcade

this will put the packet in the Arcade group below the Games group. To add another level to this
you just write a third group name.

subGroup Games Arcade & Fun
This will then place the packet in the Fun group below the arcade and games group.
If a packet belongs to multiple groups, will only subGroup affect the named group. If you want
to affect all groups you can just write “* at the first group. This will tell hick that it should add
the settings for all groups the packet belongs to. If we have a packet belonging to Graphics and
Viewers and we which to but this packet in a subGroup with the same name in both of these
groups you can do it in two ways:

subGroup Graphics Blob
subGroup Viewers Blob

or you can just write:

subGroup “ Blob

10

HickUP 1.1

3.2.7 Multiple

By defaultis it only allowed to select and install one version in each packet. If you want to allow
the users to install more then one version of the packet you will need to set this option. Make
sure that the packet doesn’t have any internal conflicts. This can be used when you want to give
the user the possibility to set settings for different programs. This is a packet specific setting.

multiple

3.2.8 Hidden

Sometimes it can be good to hide packets for all users, this can be achieved with this flag. An-
other possible solution is to deny all users. An example of the use it is, if you have a packet
which is required, as a system setup for all users. The packet is not a choice of the user it should
always be setuped, then it could be an idea to hide it. Note that if you set is on hide you wont
need to select is in the project specifications to allow it, it will automaticly be installed, this can’t
be achieved in the same way with the deny. To hide the packet you write in the spacket:

hidden

3.2.9 Required

If you must have a version of a packet, and you at the same time want to let the user choose
which version you can use the require option. It works like if the user haven't selected any ver-
sion it will automaticly choose the default version, if any, or take the first version specified in
the packet. To make a packet required you write in the packet:

required

3.2.10 Force

At times you which some users to automatically get a certain packet installed, without letting
them choose. The force setting can set so that all users or some user or group can get a packet
version installed. When forcing a version will all other chosen versions be replaced with the
named version. You can declare as many force as you want in a packet. It is importent that the
version which is going to be forced exists. This is a packet specific setting.

force VERSION

force user | group STRING VERSION

force user | group {' [STRING ...]} VERSION

A few examples on how you can write a force. If having a packet which everyone should be
using, you can just write it like:

force 1.0

this will then force the version 1.0 in the packet onto all the users. If only a user or group is to
be forced you will have to specify whom you inted to force this on. You can give a list of users

11

HickUP 1.1

or groups if you put the names in between ‘{" and ‘}. The user and group information is taken
from the Unix system. Example on this:

force user { nisse kalle } 1.0

forcing version 1.0 onto the users nisse and kalle. If you use a group, will all members of that
group get the packet forced. Example on this:

force group admin 1.1

Forces to all members of the admin group, version 1.1. If setting so a user is in more then one
force will the result be unspecified.

3.2.11 Allow

To make some packets avalibel for some users, and hiding from others, the allow can be usefull.
You can setup a list of users which can access a specified version in the packet. Users who isn’t
named by name or beloning to named group won’t be snown the version. You can have as many
allow directions as you wish, and they can be combind with denies, see chapter 3.2.12. By set-
tings the version to an empty string ““ or { } will that apply for all versions in the packet.

allow user | group STRING VERSION

allow user | group STRING {[VERSION ...]}

allow user | group { [STRING]} VERSION

allow user | group { [STRING ...]}
{[VERSION ...1}

If you want to allow the users ‘daniel’ and ‘ankan’ only to be abel to choose the version 1.2 in
a packet you can write it like this.

allow user { daniel ankan } 1.2

Perhaps also the users in the ‘stuff’ group should be granted access to 1.2 and also be exclusive
access to 1.0, that could be written something like this.

allow group stuff { 1.2 1.0 }

You can combind multiple allows and denies to get the effects you wish for.

12

HickUP 1.1

3.2.12 Deny

Deny works like allow only instead of excluding all other users then the named, it denies the
named users or groups.

deny user | group STRING VERSION
deny user | group STRING {[VERSION ...]}
deny user | group {[STRING] } VERSION

deny user | group { [STRING ...]}
{[VERSION ...1}

3.2.13 Version

Before a packet is valid you must have atleast one version, else won't the packet be selectabel
in hickup. There is no limit on how many version you can have in a packet. A version can con-
tain all variables (see chapter 3.3) and created, modified, expire and addAbout. Syntax for a ver-
sion:

version [def] VERSION {'
I}l
Below is the version out of the hickup packet, might depend on where you install hickup.

version def 1.1a3 {
created 19/01/2000
addAbout “\n\nThis is a development version.”

link {
bin /local/fw/hick/1.1a3/bin/hickup
bin /local/fw/hick/1.1a3/bin/hickprj
bin /local/fw/hick/1.1a3/bin/hickcmd

}
}

3.2.14 AddAbout

This allows a version to have additional information to the packets about message. Or it can
override the packets about message with the override option. This is a version specific setting.

addAbout [override] STRING
An example on how the addAbout can be used:

addAbout “This version adds a new feature.”

13

HickUP 1.1

This will add to the packets about message “This version adds a new feature.”.for the version
the addAbout is specified in. If you want to remove the packets about message when viewing a
version you just set the override flag.

3.3 Variables

There is 11 different variables, which can be set both in the version and packet. Those set in the
packet is added to the versions once installing. These variables is the information added to the
user settings. You can have as many variables as you need. All variables have the possibility to
write values in a list, for example:

link bin /usr/bin/ls
link man /usr/man/manl/Is.1

these two variables can be written without having the variable name infornt of them for each.
By surounding them with a ‘{* and ‘}’ will allow you to write a list of commands. This could
then be written:

link {
bin /usr/bin/ls
man /usr/man/manl/Is.1

}

In the following descriptions of the variables will the list syntax not be written out.

3.3.1 Call

Sometimes the variables is not enough to get a program setuped. With the call variable can you
execute a program when running the update. It can be setup when to run the call, so that you can
set it only to execute the script at first installation time, or when removed. The syntax for the
call variable:

call [install | update | remove [‘&’ install |
update | remove] STRING STRING

By default is all flags setl, so that the install, update and remove flags is set. This means it will
be executed at occations. The first STRING is the file to execute, remember to always specify
full path. And the second STRING is any additional options to the program. Both STRING have
to be specified. If no options is wanted, set it to an empty STRING. Hick will add some options

to the script such as update method, install, update or remove and packet name and version fol-
lowed by the additional options. All output of the script will be written to the runlog file. Below
follows an example on how the call script works:

call install & remove /local/share/install/netscape

this will run the /local/share/install/netscape script when installing and removing the packet, and
not when updating. Updating is when a installed packet have been modified and the modified

14

HickUP 1.1

date is set. If a user now choose the packet ‘netscape’ and version ‘4.6’ will the following argu-
ments be passed to the script once executed:

/local/share/install/netscape install “netscape”
H4. 6” 11113

when the user then removes the packet or change to another version will it then run the script
with the options:

/local/share/install/netscape remove “netscape” “4.6”

It will also run the script when removing a expired packet, see chapter 3.2.5.

3.3.2 Conflict

Programs sometimes conflicts with eachother so that if you setup for one the other wont be
working correctly. The conflict settings is to let the user know that it can’t install both programs
and get away with it. You can conflict against a whole packet or specified versions in a packet.
A conflict must be both ways so if you from a version conflict with a whole packet, must there
be a conflict back from the whole packet to that single version. In the hickup program will it
warn on those occations this isn’t true. The syntax for the conflict variable:

conflict PACKET VERSION

conflict PACKET {' [VERSION ...]}

To make a conflict to a whole packet you can make an empty string (*“) on the version, the
packet must be specified. Some examples on conflict:

conflict emacs *“

This will create a conflict to the whole emacs packet.
conflict gcc 1.6.3

Causes a conflict to GCC version 1.6.3.
conflict gdb { 4.16 4.17 }

Marks conflicts with gdb 4.16 and 4.17.

3.3.3 Create

Sometimes it's usefull to just add text to a text file, or just create a shell script from the packet.
The create will add or create scripts. It will add to the file in no paticular order from the packets,.
Also is there a need of caution when creating a file, if overwritting another one. Note that you
can use ~/ and full path to the file name, as well as bin/ which will be created out of the base

15

HickUP 1.1

hick dir.. When adding and the file isn't existing will the file be created. The synrax for the cre-
ate variable:

create [new | append] [MODE] FILENAME CONTENTS
To create a new file, which is suppose to be a shell script you can do like this:
create new 755 bin/hello “I#/bin/sh

echo \"Hello World\I\”

This will generate a script in ${HICKROOT}/.hick/${HICKTYPE}/bin/hello which writes out
“Hello World!” once executed.

3.3.4 Env

Environment variables can easy be setuped with using this variable. You can append, prepend,
set and unset values. The paths are written without use of any separators, this will be taken care
of later. The environment variables can be created for various shell scripts and you don’t have
to think about that more then the name and value if the environment variable. The information
here will be passed onto a script language which will generate the acctual script, see chapter 4.1.
Below is the syntax for the env variable:

env [prepend | append | set]| NUMBER STRING STRING
env unset NUMBER STRING
you can’t mix between set, unset or prepend and append.

prepend and append, prepend will be put before the current environment value and append will
be put after the current environment value.

how is the priority levels working, the default priority level is set to 50. O - 49 will be placed
before the default priority and is there for of a higher priority. Anything higher then 50 will be
placed after. This is for all but append which works in a reversed order.

3.3.5 HTML

HTML is mainly to setup a HTML index from where the user can get more help on the program.
A HTML page will be created for each hicktype in the users .hick directory called index-
$HICKTYPE.html, it's generated with hickmk for more information how to setup the HTML
layout see chapter 4.3.

html CODE TOPIC

The CODE is the HTML code for the item, it can be plain text or containing HTML tags, de-
pending on how the html generating is done.

16

HickUP 1.1

TOPIC is to what kind of link groups it belongs, this can be a empty string which will then be
no group assigned. Grouping the different links can make it easier for the user to find a specific
link.

html “<a href=\"http://www.hickup.org/ \
index.html\">HickUP.org” “Applications"”

this will add the HickUP.org link under the applications.

3.3.6 Info

For easy maintaining the GNU info dir file you can be using the info variable. This will then
create a personal top page for the installed packages with GNU info.

info NAME FILENAME SUBMENU ABOUT TOPIC

* NAME
text which is later selected to enter the info document.

* FILENAME
info filename to open, dosen’t need to include .info part.

« SUBMENU
if wanted you can jump info a submenu in the info file. Can be specified with
an empty string if no submenu is wanted.

« ABOUT
the about text, this should be written in a single line even if it's very long, it
will be formated to fit into the menu.

« TOPIC

a kinda of grouping to make it easier to find the documents. If left as an
empty string will is belong to the head topic.

If we take the gdb’s info file for example, it will look something like this:
Development
* Gdb: (gdb). The GNU debugger GDB.

In a hick packet its written as:
info Gdb gdb " "The GNU debugger GDB." Development

3.3.7 Link

This is perhaps the most usefull of the variables, at least what it where thought to use alot, link-
ing of files. You can use it to create a symbolic link to an existing or non existing file, and re-
name the link if needed.

link [normal | rename] TO FROM
The TO field can be used in three different ways, using a full path, a relative path or user home
directory. If a full path is used will the link be placed as where is specifies. The relative path is

17

HickUP 1.1

pointing into the users hicktype specific directory. The user home will begin in the specified us-
ers home, both ~/ and ~daniel/ can be used. Some example on this:

link bin /local/gnu/emacs/20.4/bin/emacs

This creates a link into ~/.hick/$HICKTYPE/bin called emacs pointing to /local/gnu/emacs/
20.4/bin/emacs.

link ~/daniel-project ~daniel/project

This will create a link called daniel-projects in the current user home from daniel’s projects di-
rectory. Even if the full path links exists it's perhaps not to usefull when it comes to linking to.

3.3.8 Menultem

To make it a bit easier can you create menu items and letting hickup take care of the generating
of the menus, see chapter 4.2. This is done by setting up the most basic, as which menu does
this belong to and item name, and command to execute. You can also send extra options which
will be passed to the menu script. The priority is for telling which menu item should be before
another, normaly this is at 50. If a number of items are at the same priority the order of those
items will be in no particular order.

menultem [PRIORITY] MENU ITEM COMMAND
[{ [NAME VALUE ...1%]

For adding like hickup into the menus you only need to write:
menultem Applications HickUP... hickup

but for more advanced menus, as a whole list of menus, you perhaps want some more options,
as separators and such. It depends alot on how the script for each window manager is written
how well things are supported. see chapter 4.2.

menultem 49 Programs "[separator]" " { isSeparator 1 }

This is an example on how a separator can be made, you can pass as amny variables for each
menu item as you want. Things that could be passed is where to find menu icons, the script for
each menu later decides if it wants to use it or not.

3.3.9 Require

Programs sometimes depends on another program or shared library to be found, and to make it
easier for the user to know what's needed you can setup a list of required packets and versions.
Required packets can be setup with ‘and’ and ‘or’ statements, is various ways.

require PACKET VERSION | {' [VERSION ...]}

[PACKET VERSION |
‘[VERSION ... 1% ...]

18

HickUP 1.1

If the version is left empty will it require that any version of that packet is installed. A normal
require might look something like this:

require Xpm “
require zlib 1.1.3

This will prompt that the packet Xpm, of any version is needed as well as zlib 1.1.3. Only some-
times the user can choose between two shared libraries like lesstif and motif, this can be solved
by writting:

require lesstif “ | motif “

You can use as many or ‘| as you need. The or ‘|’ can be written in another way if you have a
few versions in a packet required, as if you need some version of GTK+ before the 1.2.x version.

require GTK+ {1.0.0 1.0.2/ 1.0.6}
This is the same as writting a require looking as:

require GTK+ 1.0.0 | GTK+ 1.0.2 | GTK+ 1.0.6

3.3.10 Script

Scripts are a bit different then the create, see chapter 3.3.3. Instead of creating a file, or append-
ing to one without any order, can you with script create a script file which is a bit more con-
troled. Also this will allow you to have scripts for multiple shell types for when the user logins,
and wants some options setuped. With the priority level you can make sure one script will be
added before another. This is much depending on the avaliabel script types, see chapter 4.1.

script [PRIORITY] TYPE CONTENTS
For example can you use it to setup shell script options, as this for tcsh:
script tcshre "limit coredumpsize 0"
But also for many other things, as different login script for getting X server started right. As well

as a script to be runned after hickup, since hickup can't always handle all cases needed yet.
These files will then be placed in the hick directory $HICKROOT/scripts/$HICKTYPE.

3.3.11 XRes

X resources can be usefull to setup for some programs, there are three ways of doing this, one
is to use the link, see chapter 3.3.7, to make a link into a app-default directory. The other two
is adding into the Xresource-$HICKTYPE file, which is then merge at startup..

xres [inline] NAME VALUE

xres filename FILENAME

19

HickUP 1.1

You can either add entry by entry or just add a whole file into the resource file, when doing entry
by entry you don’t need to add the *:’ at the end of the name this will be handled by hickup.

20

HickUP 1.1

4 Hick Make utility

To create login scripts, window manager menus and help pages, where the hick make utility cre-
ated. It's a small script language to handle the information.

4.1 Scripts
4.2 Menus
4.3 HTML

4.4 GNU Info

21

HickUP 1.1

5 Projects

This chapter will describe how you setup a project environment. To let the program know where
to find projects are done by passing as an argument to the program. It will then lookup the spec-
ified projects, and if it has read access it will allow the user to choose programs for the project.
If also write access are allowed is a edit tab shown and the user can by that also setup what pro-
grams can be choosen. All programs and versions are by default not allowed.

5.1 Command line argument

There are two ways of letting hickup know which projects are availible, one is by entering them
all on the command like, the other is by pointing out a file containing the projects. In both cases
the project specifications are written in the same format:

NAME:SPEC:HOME [:NAME:SPEC:HOME ...]

NAME
This is the text which will be displaied on the tab in the hickup viewer.
SPEC
Where the project data files are stored. The project data files are the project
specification file and the project information. The files which are use by hick
is prjspec.hickandprjinfo.hick
HOME

Home directory project and user, this will be where the .hick directory will all the
user data over selected packets will be stored. Should be uniq for each user, if not a
global project for all users are wanted.

An example on how to write a project argument, this is for the project tools, and for the user
daniel. The project lies under /nome/tools and all the project settings are stored there. The argu-
ment string would look something like this:

tools:/home/tools/.users:/home/tools/.users/daniel

One idea is to have a wrapper script calling hickup, so it will take care of all project data.

5.2 Creating a new project

We will now go through how to create a new project, the project we will setup is caltdd
The way which will be shown isn’t the only solution on how to create a project, it’s pretty much
up to how you want it to work.

The project we are going to create is made so that we create a new user with it's home as eve-
ryone else on the system, likeome/toolsTo that we also create a new group/@tc/group
which will contain the members in the group.

After we've created the user and the group, we create the project data directory, which will be

under the projects home directory callkdme/tools/.userdn this directory will we place the
project specific files, but also the users personal hick setup.

22

HickUP 1.1

Even if we now start hickup with the project setup wont hickup care about this project since no
project specification file exists, so the next step is to create it. To do this you only need to create
an empty file, this can be achived with the commiandh.

cd /home/tools/.users
touch prjspec.hick

it will now recognize this project as a avalible project for the users, only no packets are allowed
to be choosed, since all packets are by default in a project not allowed. The next step is then to
setup the project specification, this can be done with either hickup or an text editor. For the syn-
tax of the project file see chapter 5.3. When doing it in hickup you only start hickup with the
project argument containing the project.

hickup -p tools:/home/tools/.users:/home/tools/.users/$USER

If wanted you can also add project information text, this can be a good way of letting the project
members know a little more about the project. The information file is a plain text file called
prjinfo.hick

5.3 Specification file

With a project you perhaps want to create a development environment where all the project
members use some specified tools, and others which they can freely choose inbetween. This is
where the project specification comes in, it allows the project manager to setup which programs
are avalible to use in the project, but also which programs must be used. This can simply be
achived with enabe a specific packet or version onto the project members, or even force them
to use a specified version. A line begining with an ‘# will be ignored. The syntax for the spec-
ification file is the following::

one line comment

enable TYPE PACKET VERSION

enable TYPE PACKET {' [VERSION ...] ‘¥
enable TYPE ‘{'

[PACKET VERSION ...]

[PACKET {'[VERSION ...]1% ...]

}

force TYPE PACKET VERSION

force TYPE PACKET ‘{' VERSION [VERSION ...]}
force TYPE {'

[PACKET VERSION ...]

[PACKET ‘{' VERSION [VERSION ... 1} ...]

}

23

HickUP 1.1

5.3.1 Enable

Enables a packet or a version to be avalible to select. If the version is left empty will it affect all
versions in the named packet, this can be done by writing “ or { }. If on the other hand one or
more versions, but not all is only wanted to be enabled the versions is then specified. An exam-
ples on how this can be written:

enable solaris {

gcc 2.7.2.2

make ““

autoconf {2.12 2.11}

I

this will allow the user to choose gcc 2.7.2.2 and no other version of gcc. Make any version and
autoconf version 2.12 and 2.11.

5.3.2 Force

If something really is needed of a specified version, the force directive can be used, this will
install the version on the user as if it where a force in a packet, see chapter 3.2.10. It works sim-
mular to the enable only you have to specify at least one version. When wanting to specify more
then one version the packet must support multiple choices or else will the installed version be
one of the named. An example on how this can be written:

force solaris {
automake 1.3
“tcsh options” { noclobber “coredump unlimited” }

}

this will install the automake 1.3 and set the ‘tcsh options’ noclobber and ‘coredump unlimited’
options. The user wont be abel to choose any other existing options.

24

	HickUP 1.1
	by Daniel Bergström
	1 Terminology 5
	2 Installing 7
	3 Packets 8
	4 Hick Make utility 20
	5 Projects 21

	1 Terminology
	2 Installing
	2.1 Directory structure
	Figure 1 Directories for shared hick files, showing for the types solaris and FreeBSD

	3 Packets
	3.1 Types
	3.2 Packet and Version
	3.2.1 Packet
	3.2.2 About
	3.2.3 Created
	3.2.4 Modified
	3.2.5 Expire
	3.2.6 SubGroup
	3.2.7 Multiple
	3.2.8 Hidden
	3.2.9 Required
	3.2.10 Force
	3.2.11 Allow
	3.2.12 Deny
	3.2.13 Version
	3.2.14 AddAbout

	3.3 Variables
	3.3.1 Call
	3.3.2 Conflict
	3.3.3 Create
	3.3.4 Env
	3.3.5 HTML
	3.3.6 Info
	3.3.7 Link
	3.3.8 MenuItem
	3.3.9 Require
	3.3.10 Script
	3.3.11 XRes

	4 Hick Make utility
	4.1 Scripts
	4.2 Menus
	4.3 HTML
	4.4 GNU Info

	5 Projects
	5.1 Command line argument
	5.2 Creating a new project
	5.3 Specification file
	5.3.1 Enable
	5.3.2 Force

